Сравнительный анализ биологического действия комплексов металлов с производными дифенолов на оомицет PHYTOPHTHORA INFESTANS
БГУ (Белорусский государственный университет)
Диплом
на тему: «Сравнительный анализ биологического действия комплексов металлов с производными дифенолов на оомицет PHYTOPHTHORA INFESTANS»
по дисциплине: «Биология»
2021
251.00 BYN
Сравнительный анализ биологического действия комплексов металлов с производными дифенолов на оомицет PHYTOPHTHORA INFESTANS
Тип работы: Диплом
Дисциплина: Биология
Работа защищена на оценку "9" без доработок.
Уникальность свыше 80%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 45.
В работе имеется презентация, выполненная в программе MS PowerPoint.
В работе имеется презентация, выполненная в программе MS PowerPoint.
Поделиться
ВВЕДЕНИЕ
ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ
1.1 Общая характеристика оомицета Phytophthora infestans
1.2 Фунгициды: классификация, принцип действия, перспективы развития
1.2.1 Классификация фунгицидов
1.2.2 Принцип действия фунгицидов
1.2.3 Перспективы развития и основные направления разработки новых фунгицидных препаратов
1.3 Молекулярные механизмы устойчивости к фунгицидам
1.4 Молекулярные механизмы устойчивости к азолам
1.5 Гиперэкспрессия молекулярных мишеней фунгицидов
1.6 Молекулярные механизмы устойчивости к фунгицидам Phytophthora infestans
1.7 Фунгицидное действие соединений тяжелых металлов на Phytophthora infestans
ГЛАВА 2 МАТЕРИАЛЫ И МЕТОДЫ ИССЕДОВАНИЯ
2.1 Объект исследования
2.2 Среды и реактивы
2.3 Методы исследования
ГЛАВА 3 РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЯ
3.1 Исследование действия металлокомплекса с органическими лигандами Сo-RN2 и Co-BN2 на развитие фитопатогенного оомицета P. infestans с использованием чашечного теста
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Adhikari, P. Current Status of Early Blight Resistance in Tomato: An Update / P. Adhikari, Y. Oh, D. R. Panthee // Int J Mol Sci. – 2017. – V. 18. – P. 10.
2. Ahmed, A. Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds / A. Ahmed, A. Shamsi, B. Bano // Environ Toxicol Pharmacol. – 2018. – V. 61. – P. 52-60.
3. Andrivon, D. Biology, Ecology and Epidimiology of the Potato Late blight pathogen Phytophthora infestants / D. Andrivon // Phytopathology. – 1995. – Vol. 85, № 10. – P. 1053-1056.
4. Avenot, H. Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance / H. Avenot, P. Simoneau, B. Iacomi-Vasilescu, N. Bataillé-Simoneau // Curr Genet. – 2005. – Vol. 47. – P. 234–243.
5. Bean, T. P. Sterol content analysis suggests altered eburicol 14 alpha-demethylase (CYP51) activity in isolates of Mycosphaerella graminicola adapted to azole fungicides / T.P. Bean [et al.] // FEMS Microbiology Letters. – 2009. – Vol. 296, № 2. – p. 266–273.
6. Bi, Y. Baseline sensitivity of natural population and resistance of mutants in Phytophthora capsici to zoxamide / Y. Bi, X. Cui, X. Lu [et al.] // Phytopathology. – 2011. – V. 101. – P. 1104-1111.
7. Bongomin, F. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species / F. Bongomin, R. O. Oladele, S. Gago [et al.] // Mycoses. – 2018. – V. 61. – P. 290-297.
8. Bryant, D. Cloning and characterization of a theta class glutathione transferase from the potato pathogen Phytophthora infestans / D. Bryant, I. Cummins , D.P. Dixon, R. Edwards // Phytochemistry. – 2006. – Vol. 67, № 14. – P. 1427-1434.
9. Chen, F. Analysis of RPA190 revealed multiple positively selected mutations associated with metalaxyl resistance in Phytophthora infestans / F. Chen, Q. Zhou, J. Xi [et al.] // Pest Manag Sci. – 2018. – doi: 10.1002/ps.4893. [Epub ahead of print].
10. Chohan, Z. H. Synthesis of antibacterial and antifungal cobalt(II), copper(II), nickel(II) and zinc(II) complexes with bis-(1,1-disubstituted ferrocenyl)-thiocarbohydrazone and bis-(1,1-disubstituted ferrocenyl)-carbohydrazone / Z. H. Chohan, K. M. Khan, C. T. Supuran [et al.] // Appl. Organometal. Chem. – 2004. – V. 18. – P. 305–310.
11. Cools, H.J. Impact of recently emerged Sterol 14 alpha-Demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity / H.J. Cools [et al.] // Applied and Environmental Microbiology. – 2011. – Vol. 77, №1. – p. 3830–3837.
12. Cools, H.J. Overexpression of the sterol 14 alpha-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype / H.J. Coolls [et al.] // Pest Management Science. – 2012. – Vol. 68, № 7. – P. 1034–1040.
13. Cools, H.J. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control / H.J. Cools, B.A. Fraaije // Pest Manag Sci. - 2013. – Vol. 69. – P. 150–155.
14. Devi, I. G. Synthesis and Antifungal studies of Glycine and Glycine-metal complexes on Phytophthora Capsic / I. G. Devi, P. Smitha // International Research Journal of Biological Sciences. – 2013. – V. 2. – P. 16-21.
15. Ferreira, L.C. Copper oxychloride fungicide and its effect on growth and oxidative stress of potato plants / L.C. Ferreira [et al.] // Pestic Biochem Physiol. – 2014. – Vol. 112. – P. 63-69.
16. Fillinger, S. Genetic analysis of fenhexamid- resistant fi eld isolates of the phytopathogenic fungus Botrytis cinerea / S. Fillinger [et al.] // Antimicrob Agents Chemother. – 2008. – Vol. 52. -P. 3933–3940.
17. Fillinger, S. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifi cations in the class III histidine-kinase Bos1 of Botrytis cinereal / S. Fillinger [et al.] // PLoS ONE. – 2012. – Vol. 7. – p. 425-520.
18. Fraaije, B.A. A novel substitution I381V in the sterol 14 alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides / B.A. Fraaije [et al.] // Molecular Plant Pathology. – 2007. – Vol. 8. – p. 245–254.
19. Giannousi, K. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans / K. Giannousi, I. Avramidis, C. Dendrinou-Samara // RSC Adv. – 2013. – V. 3. – P. 21743-21752.
20. Grabke, A. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry / A. Grabke, D. Fernández-Ortuño, A. Amiri [et al.] // Phytopathology. – 2014. – V. 104. – P. 396-402.
21. Grossman, N. T. Molecular mechanisms of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system / N. T. Grossman, C. D. Pham, A. A. Cleveland [et al.] // Antimicrob Agents Chemother. – 2015. – V. 59. – P. 1030-1037.
22. Guan, A. Design, Synthesis, and Structure-Activity Relationship of New Pyrimidinamine Derivatives Containing an Aryloxy Pyridine Moiety / A. Guan, C. Liu, W. Chen [et al.] // J Agric Food Chem. – 2017. – V. 65. – P. 1272-1280.
23. Halsall, D.M. Effects of certain cations on the formation and infectivity of Phytophthora zoospores. 1. Effects of calcium, magnesium, potassium, and iron ions / D.M. Halsall, R.I. Forrester / Can J Microbiol. – 1977- Vol. 23, № 8. – P. 994-1001.
24. Halsall, D.M. Effects of certain cations on the formation and infectivity of Phytophthora zoospores. 2. Effects of copper, boron, cobalt, manganese, molybdenum, and zinc ions / D.M. Halsall / Can J Microbiol. – 1977- Vol. 23, № 8. – P. 1002-1010.
25. Hermann, D. Fungicide resistance in oomycetes with special reference to Phytophthora infestans and phenylamides. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management / D. Hermann, U. Gisi // CAB International, Wallingford. – 2012. – P. 133–140.
26. Hildebrand, P.D. Relationships of temperature, moisture, and inoculum density to the infection cycle of Peronospora destructor / P.D. Hildebrand, J.C. Sutton // Canadian Journal of Plant Pathology. – 1984. – Vol. 6. – P. 127-134.
27. Ishii, H. Resistance in Venturia nashicola to benzimidazoles and sterol demethylation inhibitors. In: Thind TS (ed) Fungicide resistance in crop protection: risk and management / H. Ishii // CAB Internationa. – 2012. – P. 21–31.
28. Jampilek, J. Potential of agricultural fungicides for antifungal drug discovery / J. Jampilek // Expert Opin Drug Discov. – 2016. – V. 11. – P. 1-9.
29. Kalampokis, I. F. Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans / I. F. Kalampokis, G. C. Kapetanakis , K. A. Aliferis [et al.] // Fungal Genet Biol. – 2018. – V. 115. – P. 52-63.
30. Koeller, W. Target Sites of Fungicide Action / W. Koeller. - Boca Raton (Florida): CRC Press, 2017. – 338 P.
31. Lassalle, Y. UV-visible degradation of boscalid--structural characterization of photoproducts and potential toxicity using in silico tests / Y. Lassalle, A. Kinani, A. Rifai [et al.] // Rapid Commun Mass Spectrom. – 2014. – V. 28. – P. 1153-1163.
32. Leesutthiphonchai, W. How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. / W. Leesutthiphonchai [et al.] // Phytopathology. – 2018. – Vol. 108, № 8. – P. 916-924.
33. Leroux, P. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerelia graminicola / P. Leroux [et al.] // Pest Management Science. - 2007. – Vol. 63, № 7. – P. 688-698.
34. Li, X. Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry / X. Li, D. Fernández-Ortuño, A. Grabke [et al.] // Phytopathology. – 2014. – V. 104. – P. 724-32.
35. Liu, Y. Characterization of laboratory pyrimethanilresistant mutants of Aspergillus fl avus from groundnut in China / Y lui [et al.] // Crop Prot. – 2014. – Vol. 60. – P. 5–8.
36. Loginova, N. V. Redox-active antifungal cobalt(II) and copper(II) complexes with sterically hindered o-aminophenol derivatives / N. V. Loginovaa, T. V. Koval’chuk, N. P. Osipovich [et al.] // Polyhedron. – 2008. – V. 27. – P. 985-991.
37. Lucas, J.A. The evolution of fungicide resistance / J.A. Lucas, N.J. Hawkins, B.A. Fraaije // Adv Appl Microbiol. – 2015. – Vol. 90. – P.29-92.
38. Mao, X. W. Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum / X. W. Mao, , J. S. Li, Y. L. Chen // Pestic Biochem Physiol. – 2018. – V. 144. – P. 27-35.
39. Markoglou, A.N. Genetic control of resistance to the piperidine fungicide fenpropidin in Ustilago maydis / A.N. Markoglou, B.N. Ziogas // J Phytopathol. – 2001. – Vol. 149. – P. 551–559.
40. Martin F.N. A combined mitochondrial and nuclear multilocus phylogeny of the genus // F.N. Martin, J.E. Blair, M.D. Coffey // Phytophthora. Fungal Genet Biol. – 2014. – Vol. 66. – P. 19–32.
41. Matson, M. E. Metalaxyl Resistance in Phytophthora infestans: Assessing Role of RPA190 Gene and Diversity Within Clonal Lineages / M. E. Matson, I. M. Small, Fry W. E. [et al.] // Phytopathology. – 2015. – V. 105. – P. 1594-1600.
42. PAN Pesticides Database – Chemicals [Electronic source] / S. E. Kegley, B. R. Hill, S. Orme [et al.], Pesticide Action Network, North America Oakland, CA, 2016. - – Mode of access: http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC38140.
43. Pánek, M. In vitro growth response of Phytophthora cactorum, P. nicotianae and P. pelgrandis to antibiotics and fungicides / M. Pánek, M. Tomšovský // Folia Microbiol (Praha). – 2017. – V. 62. – P. 269-277.
44. Pang, Z. Resistance to the novel fungicide pyrimorph in Phytophthora capsici : risk assessment and detection of point mutations in CesA3 that confer resistance / Z. Pang [et al.] // PLoS One. – 2013. – Vol. 8. – p. 565-613.
45. Pesticide // Pesticide Info [Электронный ресурс]. – Режим доступа: http://www.pesticideinfo.org/Detail_ChemReg.jsp?Rec_Id=PC38140. – Дата доступа: 16.04.2021.
46. Price, C. L. Azole fungicides - understanding resistance mechanisms in agricultural fungal pathogens / C. L. Price, J. E. Parker, A. G. Warrilow [et al.] // Pest Manag Sci. – 2015. – V. 71. – P. 1054-1058.
47. Sewell, T. R. Azole sensitivity in Leptosphaeria pathogens of oilseed rape: the role of lanosterol 14α-demethylase / T. R. Sewell, N. J. Hawkins, H. U. Stotz [et al.] // Sci Rep. – 2017. V. 7. – P. 15849.
48. Sharma, P. Nanomaterial Fungicides: In Vitro and In Vivo Antimycotic Activity of Cobalt and Nickel Nanoferrites on Phytopathogenic Fungi / P. Sharma, A. Sharma, M. Sharma [et al.] // Global Challenges. – 2017. – V. 1. – P. 1700041.
49. Sierotzki, H. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance / H. Sierotzki [et al.] // Pest Manag Sci. – 2007. – Vol. 63. – P. 225–233.
50. Sierotzki, H. A review of current knowledge of resistance aspects for the nextgeneration succinate dehydrogenase inhibitor fungicides / H. Sierotzki, G. Scalliet // Phytopathology. – 2013. – Vol. 103. – P. 880–887.
51. Souza, A. C. Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae / A. C. Souza, B. B. Fuchs, H. M. Pinhati [et al.] // Antimicrob Agents Chemother. – 2015. – V. 59. – P. 6581-6587.
52. Sparks, T. C. Perspectives on the agrochemical industry and agrochemical discovery / T. C. Sparks, B. A. Lorsbach // Pest Manag Sci. – 2017. – V. 73. – P. 672-677.
53. Stephen, C. The cell biology of late blight disease / C. Stephen [et al.] // Curr Opin Microbiol. – 2016. – Vol. 34. – P. 127–135.
54. Wang, G. Environmental fitness of metalaxyl-resistant isolate of Phytophthora capsici / G. Wang, Y. Ma // Wei Sheng Wu Xue Bao. – 2015. – V. 55. – P. 627-634.
55. Wise, K. FRAC Code List 2018: Fungicides sorted by mode of action (including FRAC Code numbering) [Electronic source] / K. Wise, Bradley C., D. Mueller [et al.] – Fungicide resistance action committee. – Iowa, 2018. – Mode of access: http://www.frac.info/docs/default-source/publications/frac-code-list/frac_code_list_2018-final.pdf?sfvrsn=6144b9a_2.
56. Xu, W. Evaluation of dicloran phototoxicity using primary cardiomyocyte culture from Crassostrea virginica / W. Xu, E. N. Vebrosky, M. L. Richards [et al.] // Sci Total Environ. – 2018. – V. 628-629. – P. 1-10.
57. Yang, Ch. Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms / Ch. Yang, H. Chantal, V. Vujanovic [et al.] // ISRN Ecology. – V. 2011. – Article ID 130289, 8 pages.
58. Yue, H. Enantioselective effects of metalaxyl on soil enzyme activity / H. Yue, S. Fang, Y. Zhang [et al.] // Chirality. – 2016. – V. 28. – P. 771-777.
59. Zhang, H. Simultaneous determination of boscalid and fludioxonil in grape and soil under field conditions by gas chromatography/tandem triple quadrupole mass spectrometry / H. Zhang, A. Zhang, M. Huang [et al.] // Biomed Chromatogr. – 2018. – V. 32. – P. 2.
Работа защищена на оценку "9" без доработок.
Уникальность свыше 80%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 45.
В работе имеется презентация, выполненная в программе MS PowerPoint.
В работе имеется презентация, выполненная в программе MS PowerPoint.
Не нашли нужную
готовую работу?
готовую работу?
Оставьте заявку, мы выполним индивидуальный заказ на лучших условиях
Заказ готовой работы
Заполните форму, и мы вышлем вам на e-mail инструкцию для оплаты