Improving the efficincy of finishing treatment of parts of metal-cutting equipment. Реферат
БГАТУ (Белорусский государственный аграрный технический университет)
Реферат
на тему: «Improving the efficincy of finishing treatment of parts of metal-cutting equipment.»
по дисциплине: «Иностранный язык»
2016
Выполнено экспертами Зачётки c ❤️ к студентам
23.00 BYN
Improving the efficincy of finishing treatment of parts of metal-cutting equipment.
Тип работы: Реферат
Дисциплина: Иностранный язык
Работа защищена на оценку "9" без доработок.
Уникальность свыше 40%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 115.
Поделиться
ВВЕДЕНИЕ
АННОТАЦИЯ
1. Metalworking
1.1 Prehistory
1.2 History
1.3 General metalworking processes
2. Metal-cutting processes
2.1 Milling
2.2 Turning
2.3 Threading
2.4 Grinding
2.5 Filing
2.6 Other
3. Metal-cutting equipment
3.1 Oxy fuel metal cutting equipment
3.2 Plasma cutters
3.3 Laser cutters
3.4 CO2 laser cutters
3.5 Fibre Laser Cutters
4. Improving the efficiency of finishing treatment of parts of metal-cutting equipment
4.1 Equipment parts processing methods
4.1.1 Finishing methods of processing metal-cutting equipment parts
4.1.1.1 Magnetic field-assisted finishing
4.1.1.2 Cryogenic deflashing
4.1.1.3 Tumble finishing
4.1.1.3 Gas cluster ion beam
4.1.1.4 Superfinishing
4.1.1.4 Chemical-mechanical planarization
4.1.1.6 Laser ablation
CONCLUSION (ЗАКЛЮЧЕНИЕ)
ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ
ПЕРЕВОД
1. Металлообработка
1.1 Предыстория
1.2 История
1.3 Общие процессы металлообработки
2. Процессы резки металлов
2.1 Фрезерование
2.2 Токарная работа
2.3 Резьбонарезка
2.4 Шлифование
2.5 Опиловка
2.6 Другие
3. Металлообрабатывающее оборудование
3.1 Газокислородное режущее оборудование
3.2 Плазменные резаки
3.3 Лазерные резаки
3.4 Углекислотные лазеры
3.5 Волоконные резаки
4. Повышение эффективности финишной обработки деталей металлорежущего оборудования
4.1 Методы обработки деталей
4.1.1 Финишные методы обработки деталей
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ (LIST OF LITERATURE)
ВВЕДЕНИЕ
Современные технологии обработки деталей являются технологиями не только настоящего, но также и будущего. Их использование в сфере промышленности имеет огромное значение, так как с их помощью можно осуществлять обработку деталей для металлорежущего оборудования. К операциям, которые можно осуществлять при помощи таких технологий, относятся использование лазеров различных видов, волоконные резаки, магнитно-абразивную обработку деталей, алмазное сглаживание и многое другое. Использование современных технологий значительно повышает уровень качества продукции.
Малые и средние предприятия постоянно стремятся к тому, чтобы снизить производственные затраты, повысить качество продукции. Именно этим и объясняется повышенный интерес предприятий к использованию новейших технологий обработки деталей металлорежущего оборудования.
Также следует отметить, что эти технологии могут использоваться для различных целей. В данной работе нас главным образом интересует обработка деталей именно для металлорежущего оборудования.
АННОТАЦИЯ
В этой работе уделяется внимание использованию новейших технологий в различных отраслях производства при обработке деталей оборудования. В первом разделе раскрывается сущность работы по обработки металла, ее историческое развитие и значимость в современной промышленности.
Второй раздел посвящен непосредственно металлорежущим технологиям.
В третьем разделе раскрываются существующие типы металлорежущего оборудования.
Четвертый раздел посвящен изучению новейших технологий по повышению эффективности обработки деталей металлорежущего оборудования.
1. Metalworking
Metalworking is the process of working with metals to create individual parts, assemblies, or large-scale structures. The term covers a wide range of work fr om large ships and bridges to precise engine parts and delicate jewelry. It therefore includes a correspondingly wide range of skills, processes, and tools.
Metalworking is a science, art, hobby, industry and trade. Its historical roots span cultures, civilizations, and millennia. Metalworking has evolved from the discovery of smelting various ores, producing malleable and ductile metal useful for tools and adornments. Modern metalworking processes, though diverse and specialized, can be categorized as forming, cutting, or joining processes. Today's machine shop includes a number of machine tools capable of creating a precise, useful workpiece.
1.1 Prehistory
The oldest archaeological evidence of copper mining and working was the discovery of a copper pendant in northern Iraq from 8,700 BCE. The earliest substantiated and dated evidence of metalworking in the Americas was the processing of copper in Wisconsin, near Lake Michigan. Copper was hammered until brittle then heated so it could be worked some more. This technology is dated to about 4000-5000 BCE. The oldest gold artifacts in the world come from the Bulgarian Varna Necropolis and date from 4450 BCE.
Not all metal required fire to obtain it or work it. Isaac Asimov speculated that gold was the "first metal". His reasoning is that by its chemistry it is found in nature as nuggets of pure gold. In other words, gold, as rare as it is, is sometimes found in nature as the metal that it is. There are a few other metals that sometimes occur natively, and as a result of meteors. Almost all other metals are found in ores, a mineral-bearing rock, that require heat or some other process to liberate the metal. Another feature of gold is that it is workable as it is found, meaning that no
2. Metal-cutting processes
Cutting is a collection of processes wherein material is brought to a specified geometry by removing excess material using various kinds of tooling to leave a finished part that meets specifications. The net result of cutting is two products, the waste or excess material, and the finished part. In woodworking, the waste would be sawdust and excess wood. In cutting metals the waste is chips or swarf and excess metal.
Cutting processes fall into one of three major categories:
• Chip producing processes most commonly known as machining;
• Burning, a set of processes wherein the metal is cut by oxidizing a kerf to separate pieces of metal;
• Miscellaneous specialty process, not falling easily into either of the above categories.
Drilling a hole in a metal part is the most common example of a chip producing process. Using an oxy-fuel cutting torch to separate a plate of steel into smaller pieces is an example of burning. Chemical milling is an example of a specialty process that removes excess material by the use of etching chemicals and masking chemicals.
There are many technologies available to cut metal, including:
• Manual technologies: saw, chisel, shear or snips
• Machine technologies: turning, milling, drilling, grinding, sawing
• Welding/burning technologies: burning by laser, oxy-fuel burning, and plasma
• Erosion technologies: by water jet, electric discharge, or abrasive flow machining.
• Chemical technologies: Photochemical machining
Cutting fluid or coolant is used wh ere there is significant friction and heat at the cutting interface between a cutter such as a drill or an end mill and the
3. Metal-cutting equipment
Metal cutting equipment refers to sharp and hard-enough tools used for cutting metals. The advent of high technology brought existence to laser and metal fabrication, engineering, and manufacturing of metal-cutting industries, although metal cutting dates back to centuries ago. Moreover, clients of metal-cutting industries include multinational companies (both small and large) that are involved in supplying transport, automotive, agricultural machineries, medical, communications, defence, gaming, signage and displays among others.
Metal cutting equipment are used laser cutting and fabricating items— small and delicate profile components to large machinery and assemblies. These include non-metals (acrylic and timber), specialist metals (titanium and tool steels), and versatile metals of mild steel, stainless steel, and aluminium alloys. Other services provided by metal cutting industries include laser welding, laser engraving, NC folding and bending, steel supply, product innovation and design, welding and fabrication, reverse engineering, and research and development. Still, metal-cutting equipments are involved in high-definition plasma cutting: plasma cutting, oxy/fuel cutting, waterjet cutting, and combined drilling and cutting.
Moreover, metal cutting equipment are important in different industries: structural steel, ship building, construction equipment, bridge building, job shops, contract manufacturing, agricultural machineries, construction equipment, transport equipment, steel service centres, and other industries—big or small. On the other hand, these metal cutting equipment industries also engage in various services, such as consultation, benchmarking, workflow analysis, methods and machine configuration layouts, and process control and management. The latest technology then are responsible in the production of the main metal processing methods such as plasma, flame, waterjet, and drilling.
4. Improving the efficiency of finishing treatment of parts of metal-cutting equipment
World power consumption is predicted to rise by some 20% in the period up to the middle of this decade. India’s electricity consumption is expecting to increase five-fold by 2030, coal will remain a major energy source and for oil and gas to peak is many decades off. This means that the demand for power generating equipment is going to be a major opportunity area for many suppliers of machined components.
The amount of condensing power will still grow considerably, with turbines being in strong demand. Many parts are machining intensive and as such dependent on the methods and means applied for metal cutting. This means, of course, that incorporating best practice with continuous improvements in manufacturing is one of the most important competitive differences.
Quality consistency, delivery capability and the production costs determine manufacturing performance and are very much dependent upon machining practices.
Many of the issues need continual attention and measures to be at their optimum. For example, how up to date are milling operations and the cutters employed? How long do generator shafts remain on the lathe? How efficient are grooving operations and what are the tool costs involved? Is tool holding stability at an optimum to allow competitive cutting data for roughing and maintaining quality levels in finishing? How well are machine tools utilized? These issues and more can be reviewed in the machine shop and can readily be transformed with direct improvements in manufacturing. Productivity improvement programs are available that will pin-point areas in machining bringing immediate improvements.
4.1 Equipment parts processing methods
Processing of metals and other structural materials used to make the starting
CONCLUSION (ЗАКЛЮЧЕНИЕ)
This work provides an overview of present technology applications for industrial products manufacturing, e.g. metal processing (cutting) and improving the efficiency. The target audience is small and medium sized enterprises (SMEs) in order to raise their interest in these technologies, which could be complementary and, in certain cases, more profitable alternatives to conventional manufacturing technologies, due to their good flexibility, quality of output and decreasing investment cost.
The report consists of a description of new techniques, a review of some real manufacturing cases in SMEs. The applications (cutting) was chosen based on the following criteria: a) highest market share, as an indication of reliability; b) investment of less than €1 million; c) basic level competence required. These are suggestions only; there are many other applications, and technology developments and improvements are continuing in aspects, such as efficiency, cooling and space requirements, speed, flexibility and price. The manufacturing sector was chosen both because of the high added-value of these technologies in this sector, and its importance in the industrial bases of developing or transition economies.
These technologies are a remarkable and a progressively more accessible option to obtain new products from a variety of materials (not only parts of metal-cutting equipment) in competitive conditions. However, in calculating the returns from investment in new technologies it must be remembered that they are not a panacea for every industrial process; although they may have advantages over other technologies, learning will be required through experimentation with configurations and materials, co-design between client and supplier to provide product enhancements, and formalisation of know-how to increase efficiency. Finally, SMEs will need to find appropriate financing schemes for their investments.
1. Asimov, I. The Solar System and Back / I. Asimov. — Doubleday and Company, Inc., 1969. — 207 p.
2. Degarmo, E.P. Materials and Processes in Manufacturing / E.P. Degarmo, J.T. Black, R.A. Kohser. — Wiley, 2003. — 183 p.
3. Graziano, A. Characteristics of cobalt chromium alloy surfaces finished using magnetic abrasive finishing / A. Graziano, V. Ganguly, H. Yamaguchi. — ASME, 2012. — 168 p.
4. Harbasian, H. A review on hot stamping / H. Harbasian, A.E. Tekkaya // Journal of Materials Processing Technology. — 2010. — 15. — P.213—215.
5. Hesse, R.W. Jewelrymaking through History: an Encyclopedia / R.W. Hesse. — Greenwood Publishing Group, 2007. — 198 p.
6. Insepov, Z. Cluster Ion-Solid Interactions: Theory,Simulation and experiment / Z. Insepov. — CRC press, Boca Raton, 2016. — 364 p.
7. Kalpakjian, S. Manufacturing Processes / S. Kalpakjian, S. Schmid. — 5th Edition. — Pearson, 2008. — 215 p.
8. Keoke, E.D. Encyclopedia of American Indian Contributions to the World: 15,000 Years of Inventions and Innovations / E.D. Keoke, K.M. Porterfield. — Infobase Publishing, 2002. — 314 p.
9. Knauth, P. The Emergence of Man, The Metalsmiths / P. Knauth. — Time-Life Books, 1974. — 267 p.
10. Possehl, G.L. Mehrgarh in Oxford Companion to Archaeology / G.L. Possehl, B. Fagan. — Oxford University Press, 1996. — 311 p.
11. Rusetski, A. Formation of a layer of magnetorheological fluid on the surface of the moving object in the gradient magnetic field / A. Rusetski, A. Mokeev, E. Korobko // Journal of physics. — 2013. — 7. — P.112—116.
12. Schwarz, J. Darmann Abrasive Products / J. Schwarz // For Superfinishing Excellence, Start With The Right Finish. — 1998. — 4. — P.12—28.
13. Timothy, L. Gear Durability Shown To Be Improved by Superfinishing / L. Timothy. — Doubleday and Company, Inc., 2009. — 301 p.
14. Wolf, S. Silicon processing for the VLSI Era / S. Wolf // Deep-submicron Process Technology. — 2002. — 4. — P.313–432
15. Yamada, I. Materials Processing by Cluster Ion Beams: History, Technology, and Applications / I. Yamada. — CRC press, Boco Raton, 2016. — 402 p.
16. Yamaguchi, H. Polishing and Magnetic Field-Assisted Finishing / H. Yamaguchi, T. Sato // Intelligent Energy Field Manufacturing Interdisciplinary Process Innovations. — 2012. — P.112—118.
Работа защищена на оценку "9" без доработок.
Уникальность свыше 40%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 115.
Не нашли нужную
готовую работу?
готовую работу?
Оставьте заявку, мы выполним индивидуальный заказ на лучших условиях
Заказ готовой работы
Заполните форму, и мы вышлем вам на e-mail инструкцию для оплаты