ВВЕДЕНИЕ
Математические и научно-технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале.
Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма сложные численные методы математических расчетов. Нередко при этом из под руки способного физика, химика или инженера выходят далекие от совершенства программы. Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов.
В ходе исследования курсовой работы использовались возможности одной из таких систем – Scilab.
Scilab – это система компьютерной математики которая предназначена для выполнения инженерных и научных вычислений таких как: решение нелинейных уравнений и систем; решение задач линейной алгебры; решение задач оптимизации ; дифференцирование и интегрирование; задачи обработка экспериментальных данных интерполяция и аппроксимация метод; решение обыкновенных дифференциальных уравнений и систем [4].
Кроме того предоставляет широкие возможности по созданию и редактированию, Scilab различных видов графиков и поверхностей.
Не смотря на то, что система содержит достаточное количество встроенных, Scilab команд операторов и функций отличительная ее черта это гибкость.
Пользователь может создать любую новую команду или функцию, а затем использовать ее наравне со встроенными функциями. К тому же система имеет достаточно мощный собственный язык программирования высокого уровня, что говорит о возможности решения новых задач.
С помощью Scilab можно, например, готовить статьи, книги, диссертации, научные отчеты, дипломные и курсовые проекты не только с качественными текстами, но и с легко осуществляемым набором самых сложных математических формул, графическим представлением результатов вычислений и многочисленными примерами.
Применение библиотек и пакетов расширения обеспечивает профессиональную ориентацию Scilab на любую область науки, техники и образования [4].
1 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОБЪЕКТОВ
1.1 Понятие математической модели, их классификация и свойства
Математическое моделирование занимает центральное место в построении эффективной технологии автоматизированного проектирования и исследования.
Математическая модель никогда не бывает полностью тождественна объекту, процессу или системе. Она строится на основе упрощений и является приближением объекта, процесса или системы. Для любого объекта, процесса или системы можно построить множество математических моделей.
Математическая модель – это совокупность математических объектов и отношений между ними, адекватно отображающая физические свойства создаваемого технического объекта. В качестве математических объектов выступают числа, переменные, множества, векторы, матрицы и т. п. Для осуществления вычислительного эксперимента на ЭВМ необходимо разработать алгоритм реализации математической модели [1].
К классификации математических моделей в разные авторы подходят по-своему, положив в основу классификации различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.) - это естественно, если к этому подходит специалист в какой-то одной науке. Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.) - это естественно для математика, занимающегося аппаратом математического моделирования.
Структурные математические модели предназначены для отображения структурных свойств объектов.
2 Алгоритмический анализ задачи
2.1 Постановка задачи
1. Найдите радиус R, удовлетворяющий требуемому значению емкости С, при заданных в таблице параметрах ε1 и L . Доказать графически, что значение R найдено верно.
2. Найти значение радиуса R, используя численный метод, указанный в таблице 2.1, при решении уравнения. Выполнить графическую интерпретацию результатов расчетов. Сравнить полученное значение с рассчитанным в пункте 1.
3. Рассчитать значение радиуса R для 6 -7 значений из диапазона значений варьируемого параметра, указанного в таблице 2.1. Построить сводный график зависимости полученных значений радиуса R от варьируемого параметра.
4. Подобрать сплайновую интерполирующую зависимость по результатам расчетов. Построить график исходной и интерполирующей функций на одном поле.
5. Выполнить расчет по индивидуальному заданию. Дать графическую интерпретацию результатов расчетов. Вычислить значения диапазона L1 – L2, при котором R находится в промежутке R1 – R2 (значения R1 и R2 задать с клавиатуры)
3 Описание ЗАДАНИЯ в пакете SCILAB
3.1 Описание модели в пакете Scilab
Для реализации задачи необходимо ввести исходные данные. Затем решаем уравнение CC(R)=0, где CC(R) определяется формулой (2.1) при заданных данных (таблица 2.1).
Решение уравнения производится двумя способами: при помощи встроенной в Scilab функции fsolve и численным методом половинного деления (рисунок 3.1).
ЗАКЛЮЧЕНИЕ
В курсовой работе изучены и приведены теоретические вопросы, связанные с математическим моделированием, численным решением алгебраических уравнений и интерполяции экспериментальных данных.
Описаны средства пакета символьных вычислений Scilab, предоставляемые для реализации математических моделей.
Во второй главе выполнена постановка задачи, приведена математическая модель, описывающая параметры емкости.
На основании математической модели разработан алгоритм ее реализации в пакете Scilab и алгоритм исследования модели при различных значениях варьируемого параметра.
В третьей главе описана реализация модели и ее исследования в системе Scilab. Приведены полученные численные результаты и графические зависимости. На основании проведенных исследований сделаны общие выводы и приведены полученные численные значения.
На сегодняшний день такое сочетание вычислительных технологий и теоретических навыков студентов является основополагающим курсом для всех электротехнических, энергетических, электронных и многих других специальностей ВУЗов, которые в будущем столкнутся с ещё более совершенными информационными системами.
В процессе выполнения и оформления работы были использованы такие пакеты как Scilab, Microsoft Word.
Поставленные задачи в курсовой работе решены в полном объеме.