Проектирование систем безопасности с идентификацией пользователя по лицу Реферат
БелГУТ (Белорусский государственный университет транспорта)
Реферат
на тему: «Проектирование систем безопасности с идентификацией пользователя по лицу»
по дисциплине: «Английский язык»
2018
Выполнено экспертами Зачётки c ❤️ к студентам
23.00 BYN
Проектирование систем безопасности с идентификацией пользователя по лицу
Тип работы: Реферат
Дисциплина: Английский язык
Работа защищена на оценку "9" без доработок.
Уникальность свыше 70%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 25.
Поделиться
Аннотация
Анатацыя
Summary
INTRODUCTION
1. FUTURE OF FACE RECOGNITION
2. EVALUATION OF FACE RECOGNITION METHODS IN UNCONSTRAINED ENVIRONMENTS
3. COGNITIVE LOAD THEORY AND ADDIE
3.1 IMAGE ANALYSES OF KRAWTCHOUK MOMENTS
3.2 METHODOLOGY FOR ENHANCEMENT OF MACULAR REGION
CONCLUSION
References
List of terms
АННОТАЦИЯ
ПРОЕКТИРОВАНИЕ СИСТЕМ БЕЗОПАСНОСТИ С ИДЕНТИФИКАЦИЕЙ ПОЛЬЗОВАТЕЛЯ ПО ЛИЦУ
Ключевые слова: идентификация по лицу, инфракрасный спектр, инфракрасная подсветка, среда авторских разработок, многочлены Кравчука, пятно, разреженное представление.
Реферат содержит: материал письменного перевода 25046 печатных знаков, перечень переведенной литературы – 5 источников, словарь научных терминов – 300 слов.
Цель работы – провести тематический обзор зарубежных источников по проектированию систем безопасности с индивидуальным распознаванием лиц.
Идентификация по лицу является одним из самых сложных систем анализа изображений и распознавания образов. Методы распознавания лиц хорошо работают на изображениях, которые собираются при тщательном сотрудничестве субъектов. Принимая во внимание, что трудности в изменении освещения, выражения, усложняют эту задачу. Возраст изменяет ткань и форму лица, в то время как закупоренные изображения оставляют частичные черты лица для обработки, что значительно усложняет проблему идентификации лиц. Этот документ представляет обзор и общую классификацию методов распознавания лиц наряду с их плюсами и минусами.
Предложенная методика повышает качество изображения, что является необходимым шагом для дальнейшего анализа изображения. Сегментированная область макулярной зоны используется для построения отображения соединений. Они могут быть выражены в виде разреженной линейной комбинации для более полного отображения. Предложенный алгоритм улучшения изображения обеспечивает его лучшее качество. Результаты оценивались с использованием показателей качества.
АНАТАЦЫЯ
ПРАЕКТАВАННЕ СІСТЭМ БЯСПЕКІ З ІДЭНТЫФІКАЦЫЯЙ КАРЫСТАЛЬНІКА ПА ТВАРЫ
Ключавыя словы: ідэнтыфікацыя па твары, інфрачырвоны спектр, інфрачырвоная падсвятленне, серада аўтарскіх распрацовак, мнагачлены Краўчука, пляма, разрэджанае ўяўленне.
Рэферат змяшчае: матэрыял письмовага перакладу 25046 друкаваных знакаý, пералiк перакладзенай лiтаратуры – 5 крынiц, слоýнiк навуковых тэрмiнаý – 300 слоý.
Мэта працы – правесці тэматычны агляд замежных крыніц па праектаванні сістэм бяспекі з індывідуальным распазнаннем асоб.
Ідэнтыфікацыя па твары з'яўляецца адным з самых складаных сістэм аналізу малюнкаў і распазнання вобразаў. Метады распазнання асоб добра працуюць на малюнках, якія збіраюцца пры дбайным супрацоўніцтве суб'ектаў. Прымаючы пад увагу, што цяжкасці ў змене асвятлення, выразы, ўскладняюць гэтую задачу. Ўзрост змяняе тканіну і форму асобы, у той час як закаркаваныя малюнкi пакідаюць частковыя рысы асобы для апрацоўкі, што значна ўскладняе праблему ідэнтыфікацыі асоб. Гэты дакумент уяўляе агляд і агульную класіфікацыю метадаў распазнання асоб разам з іх плюсамі і мінусамі.
Прапанаваная методыка павышае якасць малюнка, што з'яўляецца неабходным крокам для далейшага аналізу малюнка. Сегментаваная вобласць макулярной зоны выкарыстоўваецца для пабудовы адлюстравання злучэнняў. Яны могуць быць выяўлены ў выглядзе разрэджанай лінейнай камбінацыі для больш поўнага адлюстравання. Прапанаваны алгарытм паляпшэння малюнка забяспечвае яго лепшую якасць. Вынікі ацэньваліся з выкарыстаннем паказчыкаў якасці.
SUMMARY
DESIGN OF SECURITY SYSTEMS WITH INDIVIDUAL FACE RECOGNITION
Keywords: Face Recognition, IRS, Infrared, illumination, Authoring environment, Krawtchouk polynomials, macula, sparse representation.
Summary includes material translation 25046 symbols (13 pages), references – 5 sources, list of terms – 300 words.
Purpose – a thematic review of foreign sources on the design of security with individual face recognition.
Provides information about Face Recognition and its methodology.
Face recognition is one of the most challenging applications of image analysis and pattern recognition. Face recognition methods perform well on the images that are collected with careful cooperation of the subjects. Whereas, the challenges of change in illumination, expression, pose make this problem harder. Age changes the facial texture and shape while occluded images left partial facial features for processing, thus making the problem of face recognition much harder. This paper presents an overview
and a general classification of face recognition methods along with their pros and cons.
The proposed methodology enhances the quality of images, which is a necessary step for further analysis of images. The segmented region of the macular region is used to construct a dictionary of patches. These patches can be expressed as a sparse linear combination of an over complete dictionary. The patches of the low-resolution input are taken and the coefficients of the corresponding sparse representations are
used to generate the high-resolution output. It has been observed that the proposed image enhancement algorithm achieves better quality of images. The results were evaluated using statistical quality metrics and compared with various interpolation techniques.
INTRODUCTION
Human face is one of the most informative means of communication in our societal life. Unlike, face recognition by humans to comprehend their peers possess a natural phenomenon, but recognizing facial geometry through machine is still a challenging problem. Face recognition is the task of recognizing an individual using
digital facial image.
The purpose of the work is to present an overview and a general classification of face recognition methods along with their pros and cons.
FR is biometric application in which an individual face is identified in a digital image by analyzing and comparing patterns.
Among many biometric traits, face is considered as one of the major biometric. Although it is quite feasible to access face images, one needs to address many challenging problems such as face occlusion, blurry image, poor illumination, both
non-linear and linear transformations of face images, ageing etc. To efficiently handle these challenges, researchers have come up with robust algorithms to extract facial
feature as well as several mathematical models for preprocessing such features for better classification.
Diabetic macular edema (DME) is another major reason for low vision and blindness mainly in diabetic population. Visual loss from DME is five times more than that from proliferative diabetic retinopathy (PDR). Identification of macular area of human beings plays an important role in the detection and diagnosis of many eye
diseases for ophthalmologists. Macular changes can happen during the progress of diabetes mainly associated with non-proliferative diabetic retinopathy (NPDR) or proliferative diabetic retinopathy (PDR).
The Face Recognition is growing as a major research area because of the broad choice of applications in the fields of commercial and law enforcement. So it leads and encourages the researchers for continuous research in this area.
1. FUTURE OF FACE RECOGNITION
Face Recognition has grown to be major study areas of computer visualization and applied pattern recognition. Principle of Face Recognition is lying on input facial images, collected in electromagnetic range to their identification and verification, but beyond that, it has gain the mature level with some limitations.
A number of methods have been developed by different researchers to minimize the difficulties on the imagery, collected in Visible Spectrum. The problem of illumination is minimized by using the two techniques called as Image Processing Filters and Statistical Facial Models.
Due to the support to the invariance in the changes of poses, the infrared spectrum has achieved a great consideration in the research domain. In Face Recognition, the images captured by cameras in infrared spectrum have more characteristics than Visible Spectrum. The infrared images can be captured in different type of lighting environment; even in the complete dark night, which show the strength
of infrared images to represents the facial variances for Face Recognition. Another characteristic of infrared images is the effect of absorption and scattering on the energy, less as compared to the Visible Spectrum.
Researchers divided IRS into four sub-bands namely NIR, SWIR,
MWIR and LWIR. These sub-bands contain the different frequencies that value due to the solar spectrum and divided by absorption lines of the atmospheric gasses.
IR based FR techniques are developed due to the limitations in the visible VS and leads to a new research in the IR field for which several complex IR specific models are being proposed in which the domain specific properties of
the data are much explored. The IR images have a great significance in the field of FR to extract important biometric features, facial expression, pose changes etc., which demonstrate a high level of distinctiveness and affect the FR system.
2. EVALUATION OF FACE RECOGNITION METHODS IN UNCONSTRAINED ENVIRONMENTS
Automatic facial recognition can be seen as a pattern recognition problem, which is very challenging due to its nonlinearity. It can be viewed as a template matching problem, where matching has to be performed in a high dimensional space. A face recognition system (FRS) is typically designed to measure the similarity between probe and gallery facial images.
Face recognition systems are also looking at ways to apply the latest advances in FRT to uncontrolled environments, where state-of-the-art face detectors can achieve about 50-70% detection rate, with about 0.5-3% of the detected faces being false positives. The matching process in a FRS generates the similarity score from some probe image for each image in the gallery and taking the decision on the closest match in contrary to a human that examines the top-most matches.
A number of face recognition methods have been developed during the past decades. We can classify these methods in two groups that include appearance-based methods and model based methods. Former methods use holistic texture features that are applied to either whole-face or specific regions in a face image whereas latter
methods employ shape and texture of the face.
Face recognition problem can be considered as a space-searching problem in combination with machine learning problem. The most popular methods of appearance-based face recognition are: Principal component analysis (PCA), Independent component analysis (ICA) and Linear discriminant analysis (LDA). The PCA finds a set of the most representative projection vectors such that the projected samples retain most information about original samples. The ICA captures both second and higher order statistics and projects the input data onto the
basis vectors that are statistically independent as possible. The LDA uses the class information and finds a set of vectors that maximize the between-class scatter while minimizing the within-class scatter.
3. COGNITIVE LOAD THEORY AND ADDIE
Cognitive Load Theory (CLT) uses interactions between information structures and knowledge of human cognition to determine instructional design. The theory’s initial development in the early 1980s provided instruction that differed from the prevailing orthodoxies of the time. An emphasis on instruction designed to reduce unnecessary or extraneous cognitive load resulted in, for example, a recommendation to provide learners with many worked examples rather than problems to solve. By considering relations between working memory and long-term memory, it was possible to structure both worked examples and related instruction to further cognitive load. A strict insistence that all recommendations be directly tested for effectiveness using controlled experimental designs also provided a point of departure from the prevailing orthodoxies, which tended to recommend instruction based on process models alone without testing comparative instructional effectiveness.
According to CLT, there are three types of load:
1) Intrinsic load depends on the level of complexity of the topic;
2) Extraneous load depends on any activity that is not related to authoring the content;
3) Germane load is related to how effectively the content can be organized.
ADDIE is an instructional design model that helps the designers complete the task effectively in a systematic manner. ADDIE model comprises of five core phases such as: Analyses, Design, Development, Integration and Evaluation. The system adheres to this instructional design model.
CONCLUSION
In reference to the presented review, the applications of IR imaging for FR may be considered as the best alternative in the EMS. IR imaging attracts the researchers a lot of and to pay attention in multi-dimensional imaging system to get more accurate results in the unfavorable conditions like object illumination, expression changes, facial disguises and dark environments. However, both research approaches are in preliminary stages, although a continuous research and development may be expected to improve the overall performance of FR. Inspired from great success of IR and Visual bands in FR, a three dimensional imagery data collected over hundred narrow and contiguous spectral bands is introduced for developing a rigid FR system.
This work has presented an evaluation of face recognition methods in unconstrained environments. A comparative study on image based face recognition system along with their pros and cons are presented. Friendly nature the automatic face recognition offers a wide range of applications ranging from commercial, civilian and forensic applications.
The system adheres to ADDIE instructional design system to help teachers complete the process in systematic manner. The system consists of features established from the comparison made about different authoring tools.
The use of Krawtchouk moment matrix for face recognition, which has shown excellent image reconstruction capabilities. The Krawtchouk moment based descriptors provide good discrimination. The method provides good recognition rate even with considerably less number of training samples.
It has been observed that super resolution representation is applicable to medical images especially macular fundus images which has poor visibility of lesions affected with diabetic maculopathy. This work has established that enhancement-using super-resolution is better when compared to earlier approaches. The future work is to change these parameters and analyze the results and to implement this in a GPU based machine to reduce the computation time.
List of terms
1. face recognition – идентификация по лицу
2. infrared spectrum – инфракрасный спектр
3. infrared – инфракрасный луч
4. hyperspectral – гиперспектральный
5. visible spectrum – видимый спектр
6. object illumination – освещение объекта
7. pose variation – изменение позы
8. expression change – изменение выражения
9. facial disguise – изменение внешности
10. identification – распознавание
11. verification – проверка (подлинности)
12. dimensional cubic dataset – размерный кубический набор данных
13. Hyperspectral Imaging System – Система Гиперспектральной Визуализации
14. discriminant – дискриминант
15. biometric application – биометрическое применение
16. Face Recognition System – Система Распознавания Лиц
17. acquisition – приобретение
18. normalization – нормализация
19. recognition – идентификация
20. pattern – шаблон, образец
21. limitation – ограничение
22. electromagnetic range – электромагнитный спектр
23. warp – деформировать
24. Image Processing Filter – Фильтр Обработки Изображений
25. Statistical Facial Model – Статистическая Модель Лица
26. biometric technique – биометрический метод.
1. Shwetank A., Neeraj P., Karamjit B. Future of face recognition: a review. // Department of computer science, GKV, Haridwar, India. – Volume 58, 2015. – Pages 578-585.
2. Armit K. A., Yogendra N. S. Evaluation of Face Recognition Methods in Unconstrained Environments. // Apollo Institute of Technology, Kanpur, 209402, India; Institute of Engineering & Technology, Lucknow, 226021, India. – Volume 48, 2015. – Pages 644-651.
3. Ramya R., Ashwini K., Kamal B., T R Sharika. Self-Adaptive Interface for Comprehensive Authoring. // Amrita E-Learning Technologies, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India; Amrita E-Learning Research Lab, Amritapuri, Kollam, India. – Volume 58, 2015. – Pages 158-164.
4. Shekar B.H., Rajesh D.S. Affine Normalized Krawtchouk Moments Based Face Recognition. // Department of Computer Science, Mangalore University, Mangalaaangothri, Mangalore, India. – Volume 58, 2015. – Pages 66-75.
5. Swapna T R, Indu D, Chandan Ch. Macular Region Enhancement of Fundus Fluorescein Angiogram Images Using Super Resolution via Sparse Representation and Quality Analysis. // Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham; School of Medical Science and Technology, IIT Kharagpur. – Volume 58, 2015. – Pages 586-592.
Работа защищена на оценку "9" без доработок.
Уникальность свыше 70%.
Работа оформлена в соответствии с методическими указаниями учебного заведения.
Количество страниц - 25.
Не нашли нужную
готовую работу?
готовую работу?
Оставьте заявку, мы выполним индивидуальный заказ на лучших условиях
Заказ готовой работы
Заполните форму, и мы вышлем вам на e-mail инструкцию для оплаты