ВВЕДЕНИЕ
АННОТАЦИЯ
1. Theoretical aspects of laser technologies matters (Теоретические аспекты вопросов лазерных технологий)
1.1 Introduction to laser technologies (Введение в сферу лазерных технологий)
1.2 Laser Classes (Классы лазеров)
2. Practical use of lasers (Практическое применение лазеров)
2.1 Metal Cutting (Резка металла)
2.2 Non-metal application: textiles, glass, and other overview (Обзор неметаллического применения: текстиль, стекло и другие материалы)
Conclusion (Заключение)
ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ
ПЕРЕВОД
2. Практическое применение лазеров
2.1 Резка металла
2.2 Обзор неметаллического применения: текстиль, стекло и другие материалы
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПРИЛОЖЕНИЕ
ВВЕДЕНИЕ
Лазерные технологии являются технологиями не только настоящего, но также и будущего. Их использование в сфере промышленности имеет огромное значение, так как с их помощью можно осуществлять обработку металлов и неметаллов. К операциям, которые можно осуществлять при помощи лазерных технологий, относятся резка, маркировка, сварка. Также с помощью лазеров можно осуществлять контроль качества продукции.
Малые и средние предприятия постоянно стремятся к тому, чтобы снизить производственные затраты, повысить качество продукции. Именно этим и объясняется повышенный интерес предприятий к использованию лазерных технологий.
Лазеры могут делиться на несколько классов – в зависимости от целей и условий их применения. Всего существует семь таких классов.
Также следует отметить, что лазеры могут использоваться для различных целей. В данной работе нас главным образом интересует обработка металлов и неметаллов (текстиль, стекло, дерево и другие материалы).
АННОТАЦИЯ
В этой работе уделяется внимание использованию лазерных технологий в различных отраслях производства. В первом разделе раскрывается сущность лазерных технологий, а также дается система их классов.
Второй раздел работы посвящен ознакомлению с различными методами применения лазера, а конкретно для резки металла, и для обработки других материалов, таких как дерево, стекло, текстиль.
1. Theoretical aspects of laser technologies matters (Теоретические аспекты вопросов лазерных технологий)
1.1 Introduction to laser technologies (Введение в сферу лазерных технологий)
Innovation in manufacturing has a direct impact on the competitiveness of SMEs in terms of costs, but it also may enable new product design that would be not be achievable with the use of more conventional technologies. This is particularly true of laser technologies.
Following several decades of development and industrial use, lasers can now be considered to be standard equipment, with wide commercial application and good reliability, comparable to other tried and tested industrial machinery. The producers of industrial lasers provide guarantees for their operation and specify standard maintenance programmes, which, in most cases, are less demanding than are required for mechanical equipment.
The laser in a nutshell
Lasers are light sources. The concept is very versatile; they can emit visible, infrared or ultraviolet spectra; they can generate long as well as very short pulses (pulsed lasers), or very powerful steady beams (continuous-wave, or CW, lasers), which are focused using simple elements such as lenses or concave mirrors in small micrometre-size spots, or to propagate nearly parallel beams extending for several kilometres (collimated beams). They differ from a fire, the sun or an ordinary light-bulb in terms of the intrinsic light generating mechanism which radiates as a continuous repetition of spontaneous and disordered processes, producing generally uniform illumination around them. The generation of the light from lasers is by amplification of a well-ordered and single-frequency seed, which produces a very directed emission, which is single-coloured and coherent across the beam.
2. Practical use of lasers (Практическое применение лазеров)
2.1 Metal Cutting (Резка металла)
Laser cutting is the cutting of solid materials using a focused laser beam. It is by far the most common application of industrial laser technologies and also one of the most standardised. The materials to which it can be applied include mild steel, stainless steel, aluminium, alloy metals, reflective metals such as copper and brass, glass, plastic, leather, wood, and in a wide range of thicknesses. Most materials can be cut by a laser.
Laser cutting represents a step forward in product design, and especially in relation to the value that is added to products requiring complex profiles or holes. In these cases, laser use is profitable even for small production runs. The characteristics of commercial lasers make them very flexible: no tooling, no mechanical contact, little inertia, very small cut width and restricted thermally-affected zone, wide range of thicknesses of good finishing cutting, user friendly CNC (computer numeric control) programming and interface to CAD (computer aided design), minimal maintenance. However, the full benefits of their exploitation can only be achieved through experience in use and the integration of design and manufacturing, i.e. design synergy between client and supplier.
In the case of sheet metalworking, laser systems often substitute for the more conventional guillotine shears and punching machines and avoid the use of ad-hoc tooling for curved profiles. Lasers can cut down on 90% or more of a job-shop production. However, the entrepreneur must be certain that working and safety conditions are met, and that adequate servicing facilities are available in the area and should ensure whether the product could be produced more economically with other technologies such as ad hoc dies in automatic machines in the case of long runs, or oxygen lance or plasma cuts in the case of less complicated/lower finish work.
Conclusion (Заключение)
This work provides an overview of present laser technology applications for industrial products manufacturing, e.g. metal and non-metal processing (cutting, marking, welding) and quality control. The target audience is small and medium sized enterprises (SMEs) in order to raise their interest in these technologies, which could be complementary and, in certain cases, more profitable alternatives to conventional manufacturing technologies, due to their good flexibility, quality of output and decreasing investment cost.
The report consists of a description of laser techniques, a review of some real manufacturing cases in SMEs. The applications (cutting, marking, inspection, manual welding) were chosen based on the following criteria: a) highest market share, as an indication of reliability; b) investment of less than €1 million; c) basic level competence required. These are suggestions only; there are many other applications, and technology developments and improvements are continuing in aspects, such as efficiency, cooling and space requirements, speed, flexibility and price. The manufacturing sector was chosen both because of the high added-value of laser technologies in this sector, and its importance in the industrial bases of developing or transition economies.
Laser technologies are a remarkable and a progressively more accessible option to obtain new products from a variety of materials (metal, plastic, leather, wood, paper and others) in competitive conditions. However, in calculating the returns from investment in laser technologies it must be remembered that lasers are not a panacea for every industrial process; although they may have advantages over other technologies, learning will be required through experimentation with configurations and materials, co-design between client and supplier to provide product enhancements, and formalisation of know-how to increase efficiency. Finally, SMEs will need to find appropriate financing schemes for their investments.
1. Bertolotti, M. The History of the Laser / M. Bertolotti. — Institute of Physics, 2004. — 268 p.
2. Boyd, R.W. Nonlinear Optics / R.W. Boyd. — Academic Press, 2008. — 640 p.
3. Breck Hitz, C. Introduction to Laser Technology / C. Breck Hitz, J.J. Ewing, J. Hecht. — Wiley-IEEE Press, 2012. — 312 p.
4. Donges, A. Laser Measurement Technology / A. Donges, R. Noll. — Springer Verlag, 2007. — 320 p.
5. Duarte, F.J. Tunable Lasers Handbook / F.J. Duarte. — Academic Press, 1996. — 477 p.
6. Siegman, A.E. Lasers / A.E. Siegman. — University Science Book, 1996. — 1283 p.
7. Silfvast, W.T. Laser Fundamentals / W.T. Silfvast. — Cambridge University Press, 2004. — 409 p.
8. Svelto, O. Principles of Lasers / O. Svelto. — Springer Science & Business Media, 2010. — 620 p.
9. Taylor, N. Laser: The inventor, the Nobel laureate, and the thirty-year patent war / N. Taylor. — New York: Simon & Schuster, 2000. — 314 p.
10. Ter-Mikirtychev, V. Fundamentals of Fiber Lasers and Fiber Amplifiers / V. Ter-Mikirtychev. — Springer, 2013. — 253 p.
11. Webb, C. Handbook of Laser Technology and Applications / C. Webb, J. Jones. — CRC Press, 2003. — 2752 p.