14. Строение и функции пластид.
15. Эндоплазматический ретикулум: структура, локализация и функции
16. Гранулярный эндоплазматический ретикулум. Взаимодействие рибосом и мембраны ретикулума. Особенности и назначение белков, синтезируемых ГЭР
17. Строение, локализация и функции аппарата Гольджи. Функциональное взаимодействие аппарата Гольджи и других мембранных органоидов клетки.
18. Происхождение, строение и назначение лизосом.
19. Немембранные компоненты клетки.
14. Строение и функции пластид.
Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».
Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.
Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.
15. Эндоплазматический ретикулум: структура, локализация и функции.
Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.
Строение.
Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.
Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки.
16. Гранулярный эндоплазматический ретикулум. Взаимодействие рибосом и мембраны ретикулума. Особенности и назначение белков, синтезируемых ГЭР.
Гранулярный ЭР состоит из замкнутых мембран образующих вытянутые мешки, цистерны или же имеют вид узких каналов. Ширина полостей цистерн может очень варьировать в зависимости от функциональной активности клетки. Наименьшая их ширина составляет около 20 нм, наибольшая - достигает диаметра в несколько мкм. Отличительной чертой этих мембран является то, что они со стороны гиалоплазмы покрыты мелкими (около 20 нм) темными, почти округлыми гранулами, представляющими собой рибосомы, связанные с мембранами ЭР. На мембранах рибосомы расположены в виде полисом (множество рибосом, объединенных одной информационной РНК), имеющих вид плоских спиралей, розеток или гроздей. Это работающие, синтезирующие белок рибосомы, которые прикрепляются к мембранам своей большой субъединицей.
Гранулярный ЭР в клетках может быть в виде редких разрозненных мембран или же в виде локальных скоплений таких мембран (эргастоплазма). Первый тип гранулярного ЭР характерен для недифференцированных клеток или клеток с низкой метаболической активностью. Эргастоплазма характерна для клеток, активно синтезирующих секреторные белки.
17. Строение, локализация и функции аппарата Гольджи. Функциональное взаимодействие аппарата Гольджи и других мембранных органоидов клетки.
Аппарат Гольджи — мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме.
Строение.
Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок.
В Комплексе Гольджи выделяют 3 отдела цистерн, окружённых мембранными пузырьками: цис-отдел (ближний к ядру); медиальный отдел; транс-отдел (самый отдалённый от ядра).
18. Происхождение, строение и назначение лизосом.
Лизосо́ма (от греч. λύσις — растворяю и sōma — тело) — окружённый мембраной клеточный органоид, в полости которого поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого в процессе лизосомного экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных с метаболизмом и ростом клетки. Лизосома является одним из видов везикул и относится к эндомембранной системе клетки. Разные виды лизосом могут рассматриваться как отдельные клеточные компартменты.
Лизосомы были открыты в 1955 году бельгийским биохимиком Кристианом де Дювом. Лизосомы есть во всех клетках млекопитающих, за исключением эритроцитов. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли. Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов.
19. Немембранные компоненты клетки.
К немембранным органеллам клетки относятся центриоли, микротрубочки, филаменты, рибосомы и полисомы.
Центриоли (centrioli), обычно их две (диплосома), представляют собой мелкие тельца, окруженные плотным участком цитоплазмы. От каждой центриоли лучеобразно отходят микротру¬бочки, получившие название центросферы. Диплосома (две центриоли) и центросфера образуют клеточный центр, который располагается или возле ядра клетки, или возле поверхности комплекса Гольджи. Центриоли в диплосоме расположены под углом друг к другу. Каждая центриоль представляет собой цилиндр, стенка которого состоит из микротрубочек длиной около 0,5 мкм и диаметром около 0,25 мкм. Центриоли являются полуавтономными самообновляющимися структурами, которые удваиваются при делении клетки. Вначале центриоли расходятся в стороны, и возле каждой из них образуется дочерняя центриоль. Таким образом, перед делением в клетке имеются две попарно соединенные центриоли две диплосомы.